The neutrophil serine protease PR3 induces shape change of platelets via the Rho/Rho kinase and Ca(2+) signaling pathways.
نویسندگان
چکیده
INTRODUCTION Proteinase 3 (PR3) is released from neutrophil azurophilic granules and exerts complex effects on the inflammatory process. PR3 catalyzes the degradation of a number of macromolecules, but the consequences on blood cells are less well defined. In the present study, the effect of PR3 on human platelets was thoroughly investigated. METHODS The experiments were performed on washed platelets freshly isolated from blood donated by healthy human volunteers. Platelets shape change and aggregation was measured on a Chrono-Log aggregometer. The phosphorylated form of MYPT1 was visualized by immunostaining. Platelet activation was further evaluated by flow cytometry. RESULTS PR3 induced platelet shape change but not aggregation. Flow cytometry analysis showed that PR3 induced no P-selectin expression or binding of fibrinogen to the platelets, and it did not change the activation in response to PAR1- or PAR4-activating peptides or to thrombin. Furthermore, Fura-2 measurement and immuno-blotting analysis, respectively, revealed that PR3 stimulated small intracellular Ca(2+) mobilization and Thr696-specific phosphorylation of the myosin phosphatase target subunit 1 (MYPT1). Separate treatment of platelets with the Rho/Rho kinase inhibitor Y-27632 and the intracellular Ca(2+) chelator BAPTA/AM reduced the shape change induced by PR3 whereas concurrent treatment completely inhibited it. CONCLUSION The data shows that the neutrophil protease PR3 is a direct modulator of human platelets and causes shape change through activation of the Rho/Rho kinase and Ca(2+) signaling pathways. This finding highlights an additional mechanism in the complex interplay between neutrophils and platelets.
منابع مشابه
Platelet shape change is mediated by both calcium-dependent and -independent signaling pathways. Role of p160 Rho-associated coiled-coil-containing protein kinase in platelet shape change.
Platelets undergo shape change upon activation with agonists. During shape change, disc-shaped platelets turn into spiculated spheres with protruding filopodia. When agonist-induced cytosolic Ca(2+) increases were prevented using the cytosolic Ca(2+) chelator, 5, 5'-dimethyl-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (5, 5'-dimethyl-BAPTA), platelets still underwent shape change, alt...
متن کاملDichotomous regulation of myosin phosphorylation and shape change by Rho-kinase and calcium in intact human platelets.
Both Rho-kinase and the Ca(2+)/calmodulin-dependent myosin light chain (MLC) kinase increase the phosphorylation of MLC. We show that upon thrombin receptor stimulation by low-dose thrombin or the peptide ligand YFLLRNP, or upon thromboxane receptor activation by U46619, shape change and MLC phosphorylation in human platelets proceed through a pathway that does not involve an increase in cytoso...
متن کاملOxidized low-density lipoproteins induce rapid platelet activation and shape change through tyrosine kinase and Rho kinase-signaling pathways.
Oxidized low-density lipoproteins (oxLDL) generated in the hyperlipidemic state may contribute to unregulated platelet activation during thrombosis. Although the ability of oxLDL to activate platelets is established, the underlying signaling mechanisms remain obscure. We show that oxLDL stimulate platelet activation through phosphorylation of the regulatory light chains of the contractile prote...
متن کاملP130: The Role of Rho-Kinase (ROCK) in Microglia/Macrophage Polarization in Neuroinflammatory Diseases
Macrophage/microglia with heterogonous phenotype and function under physiological and pathological conditions are the main cell lineage involved in inducing immune responses in neuroinflammatory diseases which exhibit combined inflammatory and anti-inflammatory functions. An increase in the expression of iNOS triggers M1 phenotype that secrete high concentrations of inflammatory cytokines, whil...
متن کاملVGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Thrombosis research
دوره 134 2 شماره
صفحات -
تاریخ انتشار 2014